Augmented precision square roots , 2 - D norms , and discussion on correctly rounding √ x 2 + y 2 .

نویسندگان

  • Nicolas Brisebarre
  • Mioara Joldeş
  • Peter Kornerup
  • Érik Martin-Dorel
  • Jean-Michel Muller
چکیده

Define an “augmented precision” algorithm as an algorithm that returns, in precision-p floating-point arithmetic, its result as the unevaluated sum of two floatingpoint numbers, with a relative error of the order of 2−2p. Assuming an FMA instruction is available, we perform a tight error analysis of an augmented precision algorithm for the square root, and introduce two slightly different augmented precision algorithms for the 2D-norm p x2 + y2. Then we give tight lower bounds on the minimum distance (in ulps) between p x2 + y2 and a midpoint when p x2 + y2 is not itself a midpoint. This allows us to determine cases when our algorithms make it possible to return correctlyrounded 2D-norms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Hardware Designs for Correctly Rounded Elementary Functions

This paper presents an algorithm for evaluating the functions of reciprocal, square root, 2, and log2(x) with special purpose hardware. For these functions, the algorithm produces correctly rounded results, according to a specified rounding mode. This algorithm can be used to implement directed rounding which is essential for interval arithmetic, or exact rounding which minimizes the maximum er...

متن کامل

Implementation of the reciprocal square root in MPFR

We describe the implementation of the reciprocal square root — also called inverse square root — as a native function in the MPFR library. The difficulty is to implement Newton’s iteration for the reciprocal square root on top’s of GNU MP’s mpn layer, while guaranteeing a rigorous 1/2 ulp bound on the roundoff error. The reciprocal square root is an important function in 3D graphics, for the no...

متن کامل

An efficient rounding boundary test for pow(x,y) in double precision

The correct rounding of the function pow : (x, y) 7→ x is currently based on Ziv’s iterative approximation process. In order to ensure its termination, cases when x falls on a rounding boundary must be filtered out. Such rounding boundaries are floating-point numbers and midpoints between two consecutive floating-point numbers. Detecting rounding boundaries for pow is a difficult problem. Previ...

متن کامل

Solutions to the practice problems

Problem P01: Compute the first N decimal digits after the decimal point of sin(sin(sin 1)), rounded toward zero. We have sin(sin(sin 1)) ≈ 0.678: the first N decimal digits after the decimal point match the first N mantissa digits. We use a target decimal precision N1 > N , and a binary precision p. We compute x = ◦(sin 1), y = ◦(sinx), z = ◦(sin y), with all roundings to nearest. It is easy to...

متن کامل

Approximating floating-point operations to verify numerical programs∗

The verification of programs performing floating-point computations is a key issue in the development of critical software. Reasoning on floatingpoint computations is a tricky task that requires dedicated tools: floatingpoint arithmetic is not correctly handled by solvers over the reals. Several methods have been developed in order to verify programs working with floating-point numbers. Some of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010